
ReverseContinuous Delivery

in

Jonathan Hall

Agile Tour Vienna 2022

September 15, 2022



Raise your hand, and keep it up if…

● Your team does CI/CD
● Your team did a release to production last 

week
● Your team did a release to production

yesterday
● Your team does not have a permanent branch 

called develop
● Your team does not have a special “hotfix” 

procedure
● Every developer on your team merged work 

into main yesterday
● Your team has no pull requests more than 24 

hours old



Continuous Delivery 
sounds great, but we 
aren’t ready for it here 
because…

… too many 
bugs

… depend on 
manual testing

… regulated 
industry… team just 

isn’t “ready”



Agenda

What is CI/CD?

Why CD is Hard

Making CD Less Hard

Q&A



Hi, I’m Jonathan Hall

“The Tiny Devops Guy”
Software Delivery Consultant
VP Eng @ HUBUC
Podcaster

https://jhall.io

I help small companies deliver software with 

big tech confidence, on a small tech budget.



What is CI/CD?



What is real CI/CD?

● Continuously …

● … Deliver / Deploy

● What about “CI” (Continuous Integration)?

● It’s a practice …

● … not a tool



Okay, but who cares?

“Continuous delivery improves both delivery 

performance and quality, and also helps 

improve culture and reduce burnout and 

deployment pain.”

- Accelerate: The Science of Lean Software and DevOps: 

Building and Scaling High Performing Technology 

Organizations

https://amzn.to/3Qh4aRo


Why CD is Hard



Once upon a time at Bugaboo…



A typical deployment workflow, without CD



The goal?



But how do we get there?

?



The “Obvious” Approach

1. Write a bunch of automated tests

2. Automate the running of your tests for every code change (“CI” tool)

3. Wait until everyone (the team? management?) is confident that the 

automated tests are as good as, or better than manual testing

4. Finally, automate the deployment process! 🎉



The problem…

● Writing “enough” automated tests takes months… or years

● New features usually win

● “Confidence” is never achieved

● Fear, Uncertainty & Doubt (F.U.D.) takes over



Making CD Less
Hard



What would an easy solution look like?

● No big up-front effort

● No “leap of faith” moment

● Can be adopted piecemeal

● Possible to experiment with

● Can revert process changes that don’t work

● No pieces you don’t need

● Know where to focus your efforts



Wouldn’t an MVP be great?

“That version of a new product which allows 
a team to collect the maximum amount of 
validated learning … with the least effort.”

● AirBNB ⇢ Craigslist ad
● Zappos ⇢ Online photos from shoe store
● eCourse ⇢ Landing page?
● Continuous Delivery ⇢ Lean CD



Lean CD reverses the conventional wisdom

1. Automate the deployment process! 🎉

2. Write automated tests…

if you want to*

*I really, really hope you want to!



The deceptively simple rules of Lean CD

1. Automate the deployment process

2. Reorder the workflow: all manual steps happen before Merge

3. Iterate to improve the workflow for your specific needs



Lean CD deployment workflow



What about testing?



Types of “Review Environments”

● Local development environment (i.e. the dev’s laptop)

● A permanent test (or “staging”) environment

● Multiple, permanent test environments

● Ephemeral preview environments

● Test in production (TIP)



Repurpose your “Staging” environment…



… as a “Review” environment



Pros & cons of a dedicated review environment

Cons

● Slower than local testing

● Can become a bottleneck

Pros

● Slower than local testing

● Can become a bottleneck

● Actually, these problems already 

existed!

○ The real “Pro” is that now 

the bottleneck is obvious



Bottlenecks are your cue to improve something…



Improving the test environment situation

● Add new (permanent) review environments

● Add ephemeral preview environments

● Lean more heavily on local testing

● Lean more heavily on TIP



Smaller batches FTW

● Work in smaller batches (Smaller PRs, smaller commits, etc)

● Smaller batches are less risky

● Smaller batches are easier to review

● Smaller batches are easier to test

● Smaller batches are easier to revert

● Smaller batches reveal the true nature of your bottlenecks



Where to next?

1. Identify a bottleneck

2. Find a creative solution

3. Rinse, and repeat



Need some help?

LeanCDSeminar.com
4 weeks, starting October 3, 2022

Free for conference attendees

Coupon code: VIENNA

https://leancdseminar.com/


Questions?

https://leancdseminar.com (VIENNA)

https://jhall.io

https://jhall.io/vienna-2022

https://leancdseminar.com

